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Abstract

A novel approach to the creation of assemblages of three-dimensional digital objects is presented and explored. The proposed
evolutionary art approach allows the evolution of the distribution of 3D objects, which are placed on a virtual canvas, constructing
a non-photorealistic transformation of a source image. The approach is thoroughly described, giving particular emphasis to the
interaction between the artist and the tool, and to influence of the artistic decision making process in the final outcome. The
experimental results presented highlight the differences between several styles of images, evolved in accordance to different artistic
purposes, showing the potential of the approach for the production of large-scale artworks.
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1. Introduction

The main goal of the research presented in this paper is
the creation of an interactive evolutionary art tool for the
creation of large-scale assemblages of 3D digital objects.
Being an interactive tool, we are particularly interested in
ensuring that the users are able to convey their artistic
preferences and ideas through it. That is, the users should
be able to significantly influence the final outcome of the
process, express themselves through the use of this tool,
and recognize their signature in the evolved artworks, thus
connecting with them at an emotional and artistic level.

The main artistic sources of inspiration for this work
are pointillism, mixed media assemblage of objects, and
ornamentation techniques (e.g. similar to the ones found
in Gustav Klimt works). From a scientific point of view,
areas such as evolutionary non-photorealistic rendering and
artistic filter evolution, are of particular relevance.

Synthetically, the evolutionary process leading to the cre-
ation of an assemblage of 3D digital objects can be de-
scribed as follows:

(i) The user provides an input source image (e.g. a pho-
tograph);

(ii) The user creates, or selects, a library of 3D objects
that will be used to create the assemblage;

(iii) Through a user-guided evolutionary process the user
evolves the rotation, size and placement of the ob-
jects:

(a) An initial random population of object assem-
blages is created;

(b) The user indicates those that better match
his/hers ideas;

(c) The next population is created through the
crossover and mutation of the genetic code of
the selected assemblages;

(d) The process is repeated from step (b) until the
an assemblage that satisfies the preferances of
the user is found.

(iv) The 3D scene, which constitutes a non-photorealistic
portrayal of the source image is rendered using a ray-
tracer;

(v) Depending on the nature of the employed objects and
on the complexity of the scene the artist may chose
to physically replicate the virtual assemblage.

During the evolutionary stage, the user explores different
object distributions. The placement, size and rotation of
the objects have a considerable impact on the final outcome.

The distribution of objects can help to saturate a decep-
tive movement and give rhythm to the final work. On the
other hand, it can also completely distort the input image.
The nature of each object is preserved, i.e. the shape and
materials used in each object are not altered by the evolu-
tionary process. However, the color of each object is deter-
mined by the color of the corresponding pixels of the input
source image.

The proposed approach can be seen as an instance of
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Computer-Aided Creativity [1], in the sense that the tool
takes care of several aspects related with the technical ex-
ecution of the artwork, allowing the user to focus on the
creative aspects of the task, and provides mechanisms that
allow the exploration of a search space of potential art-
works, guided by the artistic and aesthetic preferences of
the user. In this way, the artwork arises from the interac-
tion between user and tool. Due to the stochastic nature
of the process, serendipity plays an important role, some-
times leading the artist to explore unforseen paths and di-
verting the artist from his/hers original ideas. On the other
hand, user guided-breeding promotes the recombination of
the individuals that are closer to the aesthetic preferences
of the user, leading to the successive refinement of the pop-
ulations.

We begin with a short introduction to evolutionary art.
In the third section, we make an overview of the different
modules of the system. In the fourth section, we describe
the evolutionary process. The experimental results are pre-
sented and analyzed in the fifth section. Finally, we draw
some conclusions and discuss aspects to be addressed in
future work.

2. Evolutionary Art

Through time, natural evolution gave rise to a huge vari-
ety of species adapted to their environment. The diversity
of their shapes, and of the ways they are able to survive,
interact and change their environments, allows us to claim
that nature is creative, or, if we prefer to see it this way,
the mother of all creativity. From a different perspective,
natural evolution can also be regarded as an optimization
process, i.e. finding the fittest species for a given environ-
ment.

From Holland’s work [2] onwards, natural evolution has
also become the basis for several Artificial Intelligence ap-
proaches, usually referred to as Evolutionary Computation
(EC). In general terms, EC approaches imitate the funda-
mental mechanisms of evolution: selection, which guaran-
tees that the most apt individuals have greater probabili-
ties to survive and reproduce; reproduction, which ensures
the inheritance of the parents’ genetic material, as well
as variation, which allows evolution. Thus, EC transforms
Darwin’s ideas into algorithms, allowing the evolution of
populations of solutions for specific problems [2].

Currently, there are four main EC approaches: Evolu-
tionary Programming [3], Evolution Strategies [4], Genetic
Algorithms [2], and Genetic Programming [5]. All of them
have been successfully applied to a large variety of prob-
lems, mainly optimization ones.

The idea of using EC for artistic purposes can be traced
back to Richard Dawkins [6], who developed a simple ge-
netic algorithm that allowed the evolution of the shapes of
virtual organisms called “biomorphs”. One of the key ingre-
dients of this approach was user interaction: the user evalu-
ated the individuals of the population according to his/hers

preferences. Those which were better classified had higher
probabilities of generating offspring. As a consequence, the
populations gradually become closer to the user’s prefer-
ences. This technique of artifact generation has been named
interactive evolutionary computation.

Following the same set of ideas, Karl Sims used Genetic
Programming to evolve populations of images. In Genetic
Programming the genetic code of each individual (geno-
type) is a program, in Sims’ case a symbolic expression
that once rendered becomes an image (phenotype). The
user assigns fitness to the images, thus indirectly determin-
ing the survival and mating probabilities of the individuals.
The fittest individuals have a higher probability of being
selected for the creation of the next population, which is
generated through the recombination and mutation of the
genetic code of the selected individuals.

The seminal work of Karl Sims allowed the evolution of
striking imagery, and the success of his system lead to the
application of evolutionary computation approaches to sev-
eral artistic tasks, including: image generation, animation,
sculpture, architecture and design (a thorough survey can
be found in [7]).

The use of evolutionary algorithms to create image fil-
ters and non-photorealistic renderings of source images has
been explored by several researchers. Focusing on the works
where there was an artistic goal, we can mention the re-
search of: Neufeld and Ross [8,9], where Genetic Program-
ming (GP) [5], multi-objective optimization techniques,
and an empirical model of aesthetics are used to auto-
matically evolve image filters; Lewis [10], which evolved
live-video processing filters through interactive evolution;
Machado et al. [11], where GP is used to evolve image col-
oring filters from a set of examples; Yip [12], which em-
ploys Genetic Algorithms (GAs) to evolve filters that pro-
duce images that match certain features of a target image;
Collomosse [13,14], which uses image salience metrics to
determine the level detail for portions of the image, and
GAs to search for painterly renderings that match the de-
sired salience maps. Several other examples exist, however
a thorough survey is beyond the scope of this article.

3. Overview of the System

Figure 1 presents the architecture of the system, which is
composed of two main components: an Evolutionary mod-
ule and a Previewing and Rendering module.

The evolutionary module is an expression–based GP [15]
interactive breeding tool, that is responsible for the evolu-
tion of a population of assemblages. The user selects two
parents, which generate offsprings through crossover and
mutation. Crossover recombines the genetic code of the
parents, being therefore responsible for the exploitation of
characteristics that are already present in the current pop-
ulation. The mutation operator induces small changes in
the genetic code, promoting exploration. An analogy can be
drawn between this process and some aspects of the artistic
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Fig. 1. The main modules of the system.

production of several artists. For instance Francis Bacon
was known to preserve and select fortuitous “accidents”,
creating in this way a painting that was different from the
originally envisioned one. In a similar way, the users pre-
serves and select variations of the individuals, evolving im-
ages that are match their preferences. Although random-
ness plays an important role, as evolution progresses the
choices of the user are continuously steering the algorithm
to a particular style of imagery, making the images increas-
ingly refined and unique.

To see the generated assemblages the user can use the
2D or 3D previewer. The 2D previewer runs on the master
computer. It evaluates the genotypes and places objects
accordingly. However, as the name indicates, it doesn’t take
into consideration the 3D nature of the objects, lighting
effects, shadows, etc. The 3D previewer employs a render
farm to produce a 3D raytraced rendering of the scene. For
that purpose it uses POV-Ray 1 , a open source raytracer.

4. Evolutionary Process

In this section we describe the evolutionary module, fo-
cusing on aspects such as: representation, genetic operators
and genotype–phenotype mapping.

4.1. Representation

The genotype of each individual has five chromosomes:
<type, rotation, size, x-position, y-position>. Each chro-
mosome is an expression tree, encoding a particular aspect
of the 3D assemblage of objects, as follows:
<type> – The output value of the type expression tree

determines what object, from a pool of available ones,
will be placed;

<rotation> – Determines the rotation that will be ap-
plied to the object;

<size> – Determines the scaling applied to the object.

1 http://www.povray.org/.

<x-position> – Determines the x coordinate where the
object will be placed;

<y-position> – Determines the y coordinate where the
object will be placed.
The internal nodes of the tree are functions from the

following set:

{sin, cos, max,min, abs,+,−,×,%, diff},

where sin and cos are the usual trigonometric opera-
tions; max and min are functions that take two arguments
returning, respectively, the maximum and minimum value;
abs returns the absolute value; {+,−,×} are the standard
arithmetic operations; % the protected division operator
[5]; diff a function that returns the difference between
the current pixel and the one specified by the coordinates
passed by the arguments of the function.

The leaf nodes are terminals. These can be variables (x,
y), random floating constants, or the source input image.

4.2. Genetic Operators

Three genetic operators are used: crossover, mutation
and chromosome replication.

The crossover operator is based on the standard GP sub-
tree exchange crossover [5]. It randomly selects a sub-tree
from each parent and exchanges them, creating two de-
scendentes. This operator is applied to each homologous
chromosome pair, meaning it can only exchange subtrees
between similar chromosomes (i.e. a subtree of the chro-
mosome encoding size cannot be replaced by a subtree of
a chromosome encoding rotation). For each homologous
chromosome pair there is a probability of occurrence of
crossover.

The mutation operator randomly selects a subtree and
replaces it by a randomly created one.

The chromosome replication operator was introduced
to propagate a specific chromosome throughout the entire
population, thus allowing the user to test it in different con-
ditions. E.g., the user may feel particularly pleased with
the rotations applied to the objects in one individual, and
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Type Rotation Size X-position Y-position

max(1.79,+( im-
age,x))

min(x,-(1.8,
sin(max(y,1.9) )))

min(y,-(min
(x,x),sin(max
(x,1.9))))

abs(x) -(sin(y),x)

Fig. 2. Chromosomes of a sample genotype and the visualization of the corresponding functions over [−1, 1], considering the source image

presented in Fig. 3(a)

.

(a) (b) (c) (d)

Fig. 3. (a) Source Image; (b) to (d) Three dither masks.

(a) (b) (c) (d) (e)

Fig. 4. Assemblages resulting from the application of type (a), rotation (b), size (c), and <type, rotation, size> (d) to the source image of

Figure 3(a), assuming a regular grid placement of the objects. Assemblage (e) is the result of simultaneously applying <type, scale, rotation,

x, y>.

wish to use the same rotation expression in all individuals.
Alternatively, the user may wish to test small variations
of a specific chromosome without changing the remaining
ones. To address these needs, the chromosome replication
(a) copies the chromosome selected by the user to all indi-
viduals in the population, replacing the corresponding ones,
(b) applies, in each individual, a node–change mutation to
the copied chromosome. When applied to a random con-
stant node-change mutation introduces a Gaussian pertur-
bation. When applied to other node types, it replaces the
function or terminal by a different one, creating or deleting
subtrees when the arity of the functions is different.

4.3. Genotype–Phenotype Mapping

In this section we describe how the genetic code of an
individual is transformed in a assemblage of 3D objects.

To ilustraste our explanation we resort to the genotype

presented in Fig. 2 and the source image presented in Fig.
3(a). For the time being we will assume that the objects
are placed following a regular 32× 32 grid, and that three
types of objects are available: cubes, spheres and pyramids.

The first chromosome, type, determines which type of
object is placed. In this case, values in ]0, 0.33] correspond
to cubes, in [0.33, 0.66] to spheres, and in [0.66, 1[ to pyra-
mids. The application of the type chromosome of Fig. 2,
alone, would produce the 3D scene depicted in Fig. 4(a).

The rotation chromosome determines the rotation that
will be applied to each object. The application of the
rotation chromosome of Fig. 2 would result in the 3D scene
presented in Fig. 4(b), where we used pyramids for easier
viewing of the effects of rotation.

Likewise, size determines the scaling that will be applied
to the object. Figure 4(c) depicts the results of indepen-
dently applying the size chromosome of Fig. 2 using cubes.

So far we considered that the objects are placed on a reg-
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Fig. 5. Source image and corresponding dither masks.

(a)

(b)

Fig. 6. Object libraries used in the experiments.

ular grid. This type of placement has characteristics that
we wish to avoid, namely: i) the regularity of the grid can
become a visual distraction; ii) it only allows a homoge-
neous distribution of the objects, making it impossible to
ignore regions of the image, or to clutter objects on certain
regions.

To overcome this limitation we introduced the x- and
y-position chromosomes, which determine the coordinates
where the objets are placed (see Fig. 4e).

The number of objects placed is also relevant. To address
this issue we resort to masks. A modified version of a space-
filling curve dither algorithm [16,17] is applied to the source
image. By establishing different parameter settings, one can
create different dither masks (see Fig. 3).

The phenotype is then rendered in several stages, each
using a different dither mask. In each stage, the positions
of the objects are calculated using the x- and y-position
chromosomes, but an objects is only placed if the mask
allows it.

The masks allow an additional degree of control to the
artist. For instance, he may chose to create different masks
for different regions of the image, thus indirectly determin-
ing de level of detail of different areas, which can be partic-
ularly useful to highlight salient detail or to abstract areas

of less importance.

5. Experimentation

The analysis of the experimental results attained by evo-
lutionary art systems, specially user driven ones, entails a
high degree of subjectivity. In our case, there is an addi-
tional difficulty: our approach is thought for large-scale for-
mats, therefore is close to impossible to adequately convey
the real look of the evolved images in the space and format
available for their presentation.

Considering these difficulties we focus on the presenta-
tion of assemblages created by our approach, highlighting
the influence of the artistic decision making in the final
outcomes.

5.1. Experimental Setup

We used the following experimental settings: Function–
set = {sin, cos, max, min, abs, +, −, ×, %, diff};
Terminal–set = {x, y, image, randomconstants} (see Sect.
4.1); Population size = 20; Number of Generations = 40;
Crossover probability = 0.6; random–subtree mutation
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probability = 0.2; node–change mutation probability =
0.02 per node; Population initialization method = Ramped
half–and–half.

The experiments were performed on an Intel Core2Duo,
2.8GHz, Windows master computer. During the course of
evolution, an heterogeneous computer cluster was used for
the 3D previewing of the populations. Depending on the
moment in time 40-70 machines were available. To pro-
duce large-scale renderings, we used a dedicated cluster
with networked file system, composed of 24 Intel Core2Duo,
2.8GHz, running Ubuntu. For previewing we used a reso-
lution of 800 × 600 pixels, and the images were rendered
without anti-aliasing, the resolution of the large-scale ren-
derings ranged from 3200× 2400 to 16000× 12000.

5.2. Results and Analysis

To assess the strengths and weaknesses of our approach
we used different types of input image, namely “still” face
photographs, upper body photographs that suggest move-
ment, and landscapes. In Fig. 5 we present one of the source
images used in these experiments, and the corresponding
dither masks using during rendering.

The creation of the libraries of objects followed the fol-
lowing general rule: Include objects of varying size and com-
plexity. The rationale is that large objects could be used to
create the raw shape of the input image, while small and
thin objects could be used to provide detail to the areas of
the image that we wished to emphasize. Figure 6 depicts
the two different object libraries used in the course of the
experiments.

The first object library (Fig. 6a) was composed, mainly,
by branches, leafs and other botanical inspired shapes.
With the second object library we which to attain assem-
blages with an appearance that is evocative of tapestry and
woven baskets. For this purpose we employed simpler ob-
jects that, when assembled, could produce the interweaved
appearance that we aimed for. In addition, we created
several objects that resemble strands to provide detail to
areas of the image that we might want to reproduce closer.

In the first stages of evolution our posture was mainly
exploratory, in the sense that we welcomed individuals that
differed in style from the ones that we had already saw,
thus valuing novelty. In later stages, namely once a promis-
ing assemblage was found, we exerted an higher degree of
guidance, forcing the algorithm to focus on variations of
this assemblage. In this way, we promoted the successive
refinement of the promising assemblage transforming it in
one that better matched our preferences.

In Fig. 7 we present several examples of images evolved
using the library of botanical shapes. As it can be observed
the choices made by the user during the evolution have a
significant impact in the final outcome.

In the evolutionary process that generated the assem-
blage presented in Fig. 7a we wished to attain an abstract
sand-like effect. This was eventually achieved by an indi-

vidual that places a vast number of objects, consequently
causing high degree of overlap among them, which makes
individual objects invisible and produces the effect we were
seeking. Figure 7b is the result of serendipity: during the
course of evolution a fortuitous mutation created an ab-
stract assemblage with an interesting contour. This image
was later refined during the course of several generations
leading to the creation of the presented assemblage.

In the evolution of the assemblages presented in Fig. 7a
and Fig. 7b we valued the individuals that better captured
the expression of the source image, giving particular em-
phasis to the eyes.

In Fig. 8 we present several assemblages evolved using the
second object library (see Fig. 6b). As it can be observed
by the comparison of these assemblages with the ones of
Fig. 7, a change in the object library can have a dramatic
effect on the final outcome.

During the evolution of these assemblages we gave par-
ticular emphasis to several different aspects, including: the
rendering of the eyes (Fig. 8a, see detail); conveying an
sense of motion (Fig. 8b), abstracting detail and mimicking
texture (Fig. 8c); overall expressiveness (Fig. 8d).

Its interesting to notice that although the objects are
placed individually on the virtual canvas, there is a sense
of continuity which results, mostly, from the artificial lines
created by the regularity in object alignment and rotation.
This effect can be better observed in the neck region of
Figs. 8a and 9a and on the background of Fig. 8b.

Although the objects are three-dimensional, they are
placed in a two-dimensional plane. Therefore, the sense of
volume and depth present in the assemblages (e.g. Fig. 8b)
results from matching the colors of the objects to those of
the original photograph. For the creation of the assemblage
presented in Fig. 9a, we explored a variation of the pre-
viously described evolutionary technique. In this case the
assemblage was evolved in two stages: in the first an assem-
blage for the face photograph was evolved; in the second
we created an assemblage for the red earring. These two as-
semblages were merged, with the objects reproducing the
earring placed closer to the viewpoint.

In Figs. 9b and 9c we present two additional images,
created with an object library composed exclusively by
spheres.

6. Conclusions and Future Work

We described a novel evolutionary approach for the gen-
eration of assemblages of 3D digital objects, presenting
results attained with different source images and object
libraries. The experimental results show that the initial
choices done by the user – selection of source image and of
object library – have a significant impact in the final out-
come. In addition, the interactive evolutionary process al-
lows the users to explore the search space of assemblages,
and to guide evolution in accordance to their artistic intent,
eventually finding regions of the space that match his/hers
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(a) (b)

(c) (d)

Fig. 7. Samples of images evolved using the object library presented in Fig. 6a.

7



(a) (b)

(detail of image a)

(c) (d)

Fig. 8. Samples of images evolved using the object library presented in Fig. 6b.
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(a) (b) (c)

Fig. 9. Some additional results.

preferences. In this way, the users are able to recognize their
artistic signature in the evolved assemblages and to develop
a sense of authorship of the evolved artworks.

One of the main limitations of our approach is the com-
putational effort required to preview and render the indi-
viduals. To overcome it, used a computer cluster to distrib-
ute the rendering tasks. Nevertheless, this process is still
time consuming, which becomes a limitation (specially for
previewing since final renderings can be made offline). In
the experiments presented we used fairly detailed objects.
Using simplified versions of the same objects would greatly
reduce previewing time. This is one one of the aspects that
will be addressed in the future.

Although the object placement strategies we explored
were able to produce interesting results, evolving the masks,
would allow greater flexibility. Additionally, image salience
analysis can play an important role. The identification of
salient detail could be used to guide object placement, in
order to promote the placement of objects in areas with
salient detail.

Finally, a larger set of experiments is also necessary to
better assess the strengths and weakness of the approach.
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